Cultivated Seaweed Can Reduce Excess Nutrients

 Seagriculture EU 2024
Cultivated Seaweed

Seaweed farming in the Faroe Islands, in the North Atlantic. Photo Credit: Ocean Rainforest

by Harrison Tasoff

Ateam of researchers from UC Santa Barbara has proposed a novel strategy for reducing large amounts of nutrients — specifically nitrogen and phosphorous — after they have already been released into the environment. In a study appearing in the journal Marine Policy, the authors contend that seaweed’s incredible ability to draw nutrients from the water could provide an efficient and cost-effective solution. Looking at the U.S. Gulf of Mexico, the team identified over 63,000 square kilometers suitable for cultivated seaweed aquaculture.

“A key goal of conservation ecology is to understand and maintain the natural balance of ecosystems, because human activity tends to tip things out of balance,” said co-author Darcy Bradley, co-director of the Ocean and Fisheries Program at the university’s Environmental Markets Lab. Activities on land, like industrial-scale farming, send lots of nutrients into waterways where they accumulate and flow into the ocean in greater quantities than they naturally would.

Opportunistic algae and microbes take advantage of the glut of nutrients, which fuel massive blooms. This growth can have all kinds of consequences, from producing biotoxins to smothering habitats. Yet, while these algae produce oxygen when they’re alive, they die so suddenly and in such volume that their rapid decomposition consumes all the available oxygen in the water, transforming huge swaths of the ocean into so-called “dead zones.”

Cultivated seaweed could draw down available nutrients, the authors claim, limiting the resources for unchecked growth of nuisance algae and microbes. Seaweeds also produce oxygen, which could alleviate the development of hypoxic dead zones.

The authors analyzed data from the U.S. Gulf of Mexico, which they say exemplifies the challenges associated with nutrient pollution. More than 800 watersheds across 32 states deliver nutrients to the Gulf, which has led to a growing low-oxygen dead zone. In 2019, this dead zone stretched just under 7,000 square miles, slightly smaller than the area of New Jersey.

Using open-source oceanographic and human-use data, the team identified areas of the gulf suitable for seaweed cultivation. They found roughly 9% of the United States’ exclusive economic zone in the gulf could support seaweed aquaculture, particularly off the west coast of Florida.

“Cultivating seaweed in less than 1% of the U.S. Gulf of Mexico could potentially reach the country’s pollution reduction goals that, for decades, have been difficult to achieve,” said lead author Phoebe Racine, a Ph.D. candidate at UCSB’s Bren School of Environmental Science & Management.

“Dealing with nutrient pollution is difficult and expensive,” Dr. Bradley added. The U.S. alone spends more than $27 billion every year on wastewater treatment.

Many regions employ water quality trading programs to manage this issue. In these cap-and-trade systems regulators set a limit on the amount of a pollutant that can be released, and then entities trade credits in a market. Water quality trading programs exist all over the U.S., though they are often small, bespoke and can be ephemeral. That said, they show a lot of promise and, according to Ms. Racine, have bipartisan support.

Seaweed aquaculture would fit nicely within these initiatives. “Depending on farming costs and efficiency, seaweed aquaculture could be financed by water quality trading markets for anywhere between $2 and $70 per kilogram of nitrogen removed,” Ms. Racine said, “which is within range of observed credit prices in existing markets.”

What’s more, the researchers note that demand is rising for seaweed in food and industry sectors. According to Racine, potential products include biofuel, fertilizer, and food, depending on the water quality. This means that, unlike many remediation strategies, seaweed aquaculture could pay for itself or even generate revenue.

All rights reserved. Permission required to reprint articles in their entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeplanet.com. Algae Planet accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Seagriculture USA 2024
AlgaeMetrics

Subscribe

Breaking-News

  • April 15, 2024: Somater, a French manufacturer of plastic and polymer primary packaging for cosmetics, pharmaceuticals, food, and industry, has partnered with French start-up Eranova to create a 100% bio-based line of packaging from green algae collected on the banks of a brackish water lagoon near Marseille, in the south of France. READ MORE...
  • April 12, 2024: Global warming is triggering significant shifts in temperate macroalgal communities worldwide, favoring small, warm-affinity species over large canopy-forming, cold-affinity species. A new study delves into the impacts of increasing sea surface temperature on the subtidal macroalgal communities in the southeastern Bay of Biscay over the last four decades. READ MORE...
  • April 10, 2024: A research team at Friedrich Schiller University in Jena, Germany, has found a bacterium that can form a team with a green alga. Both microorganisms support each other in their growth. The bacterium helps the microalga to neutralize the toxin of another, harmful bacterium. READ MORE...
  • April 8, 2024: An anthropology professor at the University of South Florida recently published a paper on the impact of algae blooms and depletion of coral reefs on the region’s tourism industry. She knew barely anyone outside her field would read it, so…she had the data put to music. READ MORE...

Algae Europe 2024

A Beginner’s Guide