Cyanobacteria could revolutionize the plastic industry

 Seagriculture EU 2024
cyanobacteria plastic industry

New variants show increased PHB production. Photo: University of Tübingen

Cyanobacteria produce plastic naturally as a by-product of photosynthesis — and they do it in a sustainable and environmentally friendly way. Researchers at the University of Tübingen have now succeeded for the first time in modifying the bacteria’s metabolism to produce this natural plastic in quantities enabling it to be used industrially. This new plastic could come to compete with environmentally harmful petroleum-based plastics.

cyanobacteria PBR

Larger quantities of cyanobacteria can be cultivated in the photobioreactor. Photo: University of Tübingen

The researchers, headed by Professor Karl Forchhammer of the Interfaculty Institute of Microbiology and Infection Medicine, recently presented their findings in several studies that appeared in the journals Microbial Cell Factories and PNAS.

“The industrial relevance of this form of bioplastic can hardly be overestimated,” says Dr. Forchhammer. Around 370 million tons of plastics are currently produced each year. According to forecasts, global plastic production is set to increase by another 40 percent in the next decade. On the one hand, plastic can be used in a variety of ways and is inexpensive, for example as packaging for food. On the other hand, it is the cause of increasing environmental problems. More and more plastic waste ends up in the natural environment, where it pollutes the oceans or enters the food chain in the form of microplastics. Furthermore, plastic is mainly made from petroleum, which releases additional CO₂ into the atmosphere when it is burned.

A solution to these problems may lie in a strain of cyanobacteria with surprising properties. Cyanobacteria of the genus Synechocystis produce polyhydroxybutyrate (PHB), a natural form of plastic. PHB can be used in a similar way to the plastic polypropylene but is rapidly degradable in the environment, as well as pollutant-free. However, the amount produced by these bacteria is usually very small. The Tübingen research group succeeded in identifying a control system in the bacteria that limits the intracellular flow of fixed carbon towards PHB. After removing the corresponding regulator and implementing several further genetic changes, the amount of PHB produced by the bacteria increased enormously and eventually accounted for more than 80 percent of the cell’s total mass. “We have created veritable plastic bacteria,” says Dr. Moritz Koch, first author of the study published in Microbial Cell Factories.

Cyanobacteria, also known as blue-green algae, are among the most inconspicuous yet powerful players on our planet. It was blue-green algae that created our atmosphere and the ozone layer protecting us from UV radiation through photosynthesis about 2.3 billion years ago.

cyanobacteria aerated tubes

Simple laboratory cultivation of cyanobacteria in aerated tubes. Photo: University of Tübingen

“Cyanobacteria are, in a sense, the hidden champions of our planet,” Dr. Koch emphasizes. “This underscores the enormous potential of these organisms.”

Since the blue-green algae only need water, CO₂ and sunlight, the researchers believe they are ideal candidates for climate-friendly and sustainable production. “Once this is established in industry, the entire production of plastics could be revolutionized,” Dr. Koch says. The long-term goal, he says, is to optimize the use of the bacteria and to increase it to the point where large-scale use becomes possible.

All rights reserved. Permission required to reprint articles in their entirety. Must include copyright statement and live hyperlinks. Contact david@algaeplanet.com. Algae Planet accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Seagriculture USA 2024
AlgaeMetrics

Subscribe

Breaking-News

  • April 19, 2024: Hospitalized COVID-19 patients who took spirulina had a lower risk of death than those who did not, according to results of a randomized controlled trial recently published in Frontiers in Immunology. READ MORE...
  • April 17, 2024: A research team exploring the untapped potential of seaweed farming for carbon sequestration is positioning Taiwan to play a role in offsetting global carbon emissions. READ MORE...
  • April 15, 2024: Somater, a French manufacturer of plastic and polymer primary packaging for cosmetics, pharmaceuticals, food, and industry, has partnered with French start-up Eranova to create a 100% bio-based line of packaging from green algae collected on the banks of a brackish water lagoon near Marseille, in the south of France. READ MORE...
  • April 12, 2024: Global warming is triggering significant shifts in temperate macroalgal communities worldwide, favoring small, warm-affinity species over large canopy-forming, cold-affinity species. A new study delves into the impacts of increasing sea surface temperature on the subtidal macroalgal communities in the southeastern Bay of Biscay over the last four decades. READ MORE...

Algae Europe 2024

A Beginner’s Guide