
More than 800 species of euglenoids will have their genomes sequenced by an international research consortium. Photo credit: Bożena Zakryś, Courtesy Euglena International Network
An ambitious plan to sequence the genomes of all known species of euglenoids over the next decade has just been launched. The network of scientists behind the initiative believe it has the potential to drive breakthroughs ranging from new biofuels and sustainable foods to cancer medicines.
The Euglena International Network (EIN), founded in 2020, is a global consortium of hundreds of scientists around the world with the collective goal of supporting euglenoid science through collaborative and integrative omics between academics and industry. Professor Rob Field, director of the Manchester Institute of Biotechnology, in Manchester, England, sits on the steering committee for the EIN and he and his lab will be part of the cross-disciplinary network of scientists working to understand and discover the capabilities of the 800+ species and strains of Euglena.
Professor Field’s interest in this area goes back to 2015 when he and his lab were the first to describe the unexpected capabilities of Euglena gracilis, including using it for creating a range of sugars and other natural products. They’ve since gone on to describe novel cyclic peptide antifungal agents produced by Euglena which could prove useful for the pharmaceutical industry.
Euglenoids are part of the protist group, home to eukaryotic organisms that do not fit into animal, plant, or fungi groups. These diverse single-celled organisms are found in an exceptionally wide range of ecosystems around the world.
Multiple euglenoid species have translational applications, showing great promise in the production of biofuels, nutraceuticals, bioremediation, cancer treatments, and even as robotics design simulators. Their enormous potential has been largely untapped due to a lack of high-quality reference genomes.
Euglenoid genomes present a particular sequencing challenge because they are an example of secondary endosymbiosis — housing mitochondria, chloroplasts, and remnants of genetic material from organisms they enveloped to acquire these organelles.
As a result, fewer than 20 species have been explored at any level for translational potential through genomics. The EIN believes the time is right to address this. Through generating high quality reference genomes for the known species of euglenoids, the EIN will work to:
- Understand the basic biology and evolution of euglenoids,
- Maximize euglenoid applications in ecological and environmental management, and
- Explore, translate, and commercialize euglenoid products.
Data collected by the EIN will be openly available to the scientific community through the European Nucleotide Archive (ENA). Once in the ENA, annotated genomes can be imported into resources such as Ensembl Protists and presented to research communities.
All rights reserved. Permission required to reprint articles in their entirety. Must include copyright statement and live hyperlinks. Contact david@algaeplanet.com. Algae Planet accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.