New Cultivation Technology Explores the Phycosphere

Seagriculture USA 2024

A schematic diagram of the porous microplate between culture wells. This allows microalgae and bacteria to be cultured in wells at different distances from one another and exchange nutrients without being in physical contact. Image courtesy of Hyungseok Kim, Massachusetts Institute of Technology

The water immediately outside microalgal cells, called the phycosphere, is rich with organic carbon that is secreted by the algae. The area is an ideal ecosystem for the growth of bacteria. However, detecting and measuring bacterial cell activity and population growth in the phycosphere is difficult. This is because until now scientists have not been able to track single bacteria, and their locations in relation to algal cells, over the course of an algal population growth cycle.

In Department of Energy sponsored research, scientists are now exploring new ways to study how the phycosphere structures bacterial communities across time and space. To do this, the researchers have created a new co-culture method called a “porous microplate.”

Porous Microplate Technology

In the lab, microplates sit in the walls between culture wells, which are tiny pools where microalgae and bacteria grow. The microplate is made of a material with nanoscale pores, smaller than the microalgae and bacteria. The tiny pores mean the microplates can pass nutrients and molecules associated with metabolism between culture cells while blocking physical contact between algae in adjacent wells.

This design enabled the researchers to stretch out the phycosphere in both space and time. As a result, they could quantify how bacteria grow and how the bacterial community changes at different distances from the algal cells.

After sequencing the DNA of algal microbiome cultured in the microplate, the team found that certain bacteria responded to the algal production of organic carbon in a spatially dependent manner. Specifically, they found that bacteria associated with the algae reached higher abundances when placed closer to the algal culture well. This result fits with expectations for real phycosphere environments.

The researchers also unexpectedly found that cultivation of the diatom Phaeodactylum in the microplate led to yields 20 times greater than batch cultures, due to continuous supplementation of nutrients.

The new incubation method is highly effective for algal cultivation, allowing the diatom Phaeodactylum to accumulate to its theoretical physical limit, densely packed with cell-to-cell distances equal to their cell radii. This result may be important to efforts to produce increased and more efficient algal biomass production at large scales.

Moreover, the porous microplate system facilitates investigation of community-level microbial interactions in complex small-scale ecosystems mediated by metabolite exchange. The system shows that the algal phycosphere is a complex ecosystem which allows multiple microbial groups to thrive in different locations within this micro-scale environment.

Ref: Bacterial response to spatial gradients of algal-derived nutrients in a porous microplate.
Kim, Hyungseok, Kimbrel, Jeffrey A., Vaiana, Christopher A., Wollard, Jessica R., Mayali, Xavier, and Buie, Cullen R.
United Kingdom: N. p., 2021. Web. doi:10.1038/s41396-021-01147-x.

All rights reserved. Permission required to reprint articles in their entirety. Must include copyright statement and live hyperlinks. Contact Algae Planet accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Seagriculture USA 2024
Contact Phil Ganz



  • July 19, 2024: A three-year development effort, the Ethiopian Bio and Emerging Technology Institute — in collaboration with the Ministry of Innovation and Technology and the Oromia Agricultural Research Institute — has recently launched the nation’s first microalgae (spirulina) research and production center at the Adami Tulu Agriculture Center, from an investment of 8.2 million birr ($142,600 USD). READ MORE...
  • July 17, 2024: A study from the University of New Hampshire has found that integrating farmed shrimp with oysters and seaweed in integrated multi-trophic aquaculture (IMTA) systems significantly reduces nitrogen levels. This could make shrimp farming more responsible and potentially support the growth of the U.S. industry. READ MORE...
  • July 15, 2024: Atlantic Sea Farms, a Maine-based leader in farmed seaweed, has harvested a record-breaking 1.3 million pounds of farmed seaweed in the 2024 harvest season. The company, which partners with fishing families to farm kelp in Maine, Rhode Island, and Alaska, has expanded both the supply of domestic line-grown kelp, as well as the market for their traceable, regeneratively farmed products to American consumers, chefs, and CPG companies since 2019. READ MORE...
  • July 12, 2024: Researchers have created tiny, vehicle-like structures which can be maneuvered by microscopic algae. The algae are caught in baskets attached to the micromachines, which have been carefully designed to allow them enough room to continue swimming. Two types of vehicles were created: the “rotator,” which spins like a wheel, and the “scooter,” which was intended to move in a forward direction but in tests moved more surprisingly. READ MORE...

Algae Europe 2024

A Beginner’s Guide