
Summer Microcystis bloom in Castle Rock Pond, Norman, Oklahoma. Credit: Haiyuan Cai
Ateam of researchers from the University of Oklahoma is leading an effort toward better management of Microcystis blooms and toxins through a new genome-based taxonomy.
OU Regents’ Professor of Biology Dave Hambright and members of his Plankton Ecology and Limnology Lab, in conjunction with OU microbiology professor Lee Krumholz, collaborated on this project with faculty members at the University of North Carolina, James Madison University, and Auburn University. The results of their work were published in Science Advances.
Through the development of the new genome-based taxonomy, researchers can characterize ecological niches of Microcystis, including nutrient requirements and seasonality. Ultimately, they will be able to control harmful Microcystis blooms.
The team has developed genetic markers that identify 16 unique species, with as many as 30 or more likely, that are genetically distinct Microcystis species present in water systems.
“This new genome-based taxonomy lays the basis for researchers to formulate science-based proactive management programs to rid our waters of harmful Microcystis blooms,” Dr. Hambright said. “Our improved ability to identify and study species of this algae will aid our ability to reduce health risks, as well as manage and protect our increasingly vulnerable water resources.”
Understanding Microcystis ecology and evolution is foundational to lake and water quality management. While traditional Microcystis taxonomy recognizes multiple species, these classifications are controversial as they are based on morphology and not ecological features. Additionally, they conflict with standard DNA-sequence-based classifications, which suggest one species with complex and variable ecologies.
Based on the work of OU biology doctoral student Katherine Cook, published in 2020 in Limnology & Oceanography, the group hypothesized Microcystis and its microbiome were a co-evolved community of complementary interacting bacteria species (an interactome), with each necessary for the success of the others. Their goal was to examine the genetic makeup of Microcystis from around the world using 122 published entire genomes. They used this information to make predictions of potential metabolic functions that might be provided by the microbiome bacteria. Their paper represents the foundation for that goal in the form of a robust taxonomic classification, including evolutionary relationships.
The research was funded by the National Science Foundation. Drs. Hambright and Krumholz are the principal investigators with collaborators Hans Paerl at the University of North Carolina, Morgan Steffen at James Madison University and Alan Wilson at Auburn University.
The majority of the bioinformatic analyses in this paper was conducted by OU postdoctoral fellow Haiyuan Cai, with assistance from OU doctoral student Chris McLimans. Additional data analysis was supported by OU research assistant professor Jessica Beyer.
Story, courtesy University of Oklahoma
All rights reserved. Permission required to reprint articles in their entirety. Must include copyright statement and live hyperlinks. Contact david@algaeplanet.com. Algae Planet accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.