New Technology Detects Algae Crop Health

 Seagriculture EU 2024

A new technology developed at UC San Diego uses chemical ionization mass spectrometry to alert algae growers when volatile gas signatures change, allowing them to harvest algae crops when under attack by contaminating organisms.

A team of University of California San Diego (UCSD) chemists, in research funded by the Department of Energy, have developed a technology for real-time measurement of algae crop health that could save hundreds of millions of dollars in biomass losses.

“In order to have enough algae to supply renewable materials, whether for biofuels, bioplastics, or nutraceuticals, we need to find ways to increase algae production and yield. Keeping algae healthy is one way to do this,” said Robert Pomeroy, Senior Lecturer at UCSD’s Department of Chemistry and Biochemistry.

Dr. Pomeroy is the senior author of the research paper published in Proceedings of the National Academy of Sciences, October 2021, and led the development of the technology with paper co-author Ryan Simkovsky.

A new method of assessing volatile gases

The most economically competitive method of cultivating algae is to grow them in large-scale raceway ponds. Open biomass production, however, leaves their growth vulnerable to contamination by a range of microscopic pond invaders including viruses, bacteria, and fungi that can decimate algae crops in a matter of hours.

The UCSD team developed a new method of assessing volatile gases — organic compounds often emitted by microbial processes.

Algae Crop Health Researchers

UC San Diego graduate student Alexia Moore (left) and recent PhD recipient Jon Sauer are co-authors of a new PNAS research paper describing a new technology that monitors the health of algae crops.

Using an instrument developed in UCSD Professor Kimberly Prather’s lab, the researchers devised an automated way to perform real-time measurements of volatile gases using chemical ionization mass spectrometry, or CIMS, a method previously used in medicine, defense, and drug enforcement.

The technology continuously monitors the normal health of algae by tracking their volatile gas emissions through their growth and bloom cycles. When invading organisms or predators attack and induce stress, this results in a change to volatile gas signatures. Using CIMS, the scientists showed they can instantly detect the disruption and alert algae cultivators to take action to save the harvest.

Saving the crop

“If you knew there was an attack on the crop, from insects or bacteria, then you could either mitigate the damage or pull the plug and harvest before there’s any damage done,” said Dr. Pomeroy, who works with chemist Mike Burkart and biologist Steve Mayfield in the Food and Fuel for the 21st Century program. “Bacteria are built to attack and eat the algae and their growth is exponential. You could be fine one day with nice green algae and the next day it’s a brown, muddy, mess. So, this is not like losing 10 percent of your wheat crop — overnight you could lose your entire algae crop.”

The CIMS system, the researchers noted in their experiments, detected grazing contaminations by infectious organisms 37 to 76 hours earlier than traditional monitoring methods that have been used for years, including microscopy and fluorescence.

“This is an excellent example of how mass spectrometry that was developed for a different application (measuring gas phase ocean emissions) is now being used to address another problem of societal relevance,” said Professor Prather, founding director of the National Science Foundation Center for Aerosol Impacts on Chemistry of the Environment (CAICE). “There are endless applications in the environmental and health fields for how these online mass spectrometry measurements can be used to tackle challenging problems.”

All rights reserved. Permission required to reprint articles in their entirety. Must include copyright statement and live hyperlinks. Contact Algae Planet accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Seagriculture USA 2024



  • April 19, 2024: Hospitalized COVID-19 patients who took spirulina had a lower risk of death than those who did not, according to results of a randomized controlled trial recently published in Frontiers in Immunology. READ MORE...
  • April 17, 2024: A research team exploring the untapped potential of seaweed farming for carbon sequestration is positioning Taiwan to play a role in offsetting global carbon emissions. READ MORE...
  • April 15, 2024: Somater, a French manufacturer of plastic and polymer primary packaging for cosmetics, pharmaceuticals, food, and industry, has partnered with French start-up Eranova to create a 100% bio-based line of packaging from green algae collected on the banks of a brackish water lagoon near Marseille, in the south of France. READ MORE...
  • April 12, 2024: Global warming is triggering significant shifts in temperate macroalgal communities worldwide, favoring small, warm-affinity species over large canopy-forming, cold-affinity species. A new study delves into the impacts of increasing sea surface temperature on the subtidal macroalgal communities in the southeastern Bay of Biscay over the last four decades. READ MORE...

Algae Europe 2024

A Beginner’s Guide